T-pro-it-1.0

T-Tech Created at 10.12.2024 08:23
0.629
The overall result
16
Place in the rating

Ratings for leaderboard tasks

The table will scroll to the left

Task name Result Metric
LCS 0.158 Accuracy
RCB 0.575 / 0.506 Accuracy F1 macro
USE 0.312 Grade norm
RWSD 0.612 Accuracy
PARus 0.922 Accuracy
ruTiE 0.852 Accuracy
MultiQ 0.575 / 0.442 F1 Exact match
CheGeKa 0.509 / 0.423 F1 Exact match
ruModAr 0.515 Exact match
MaMuRAMu 0.841 Accuracy
ruMultiAr 0.456 Exact match
ruCodeEval 0.432 / 0.626 / 0.677 Pass@k
MathLogicQA 0.74 Accuracy
ruWorldTree 0.99 / 0.99 Accuracy F1 macro
ruOpenBookQA 0.938 / 0.938 Accuracy F1 macro

Evaluation on open tasks:

Go to the ratings by subcategory

The table will scroll to the left

Task name Result Metric
BPS 0.959 Accuracy
ruMMLU 0.768 Accuracy
SimpleAr 0.994 Exact match
ruHumanEval 0.266 / 0.479 / 0.573 Pass@k
ruHHH 0.837
ruHateSpeech 0.83
ruDetox 0.242
ruEthics
Correct God Ethical
Virtue 0.395 0.406 0.553
Law 0.412 0.391 0.52
Moral 0.436 0.435 0.588
Justice 0.361 0.352 0.5
Utilitarianism 0.327 0.335 0.467

Information about the submission:

Mera version
v.1.2.0
Torch Version
2.5.1
The version of the codebase
44ddcb3
CUDA version
12.4
Precision of the model weights
bfloat16
Seed
1234
Batch
1
Transformers version
4.46.3
The number of GPUs and their type
8 x NVIDIA H100 80GB HBM3
Architecture
vllm

Team:

T-Tech

Name of the ML model:

T-pro-it-1.0

Model size

32.0B

Model type:

Opened

SFT

Architecture description:

32B open source russian model

Description of the training:

Based on Qwen2.5-32b-it post-trained to increase performance on russian language tasks

Pretrain data:

Diverse high-quality datamix of pre-train and synthetic data

License:

Apache 2.0

Inference parameters

Generation Parameters:
simplear - do_sample=false;until=["\n"]; \nchegeka - do_sample=false;until=["\n"]; \nrudetox - do_sample=false;until=["\n"]; \nrumultiar - do_sample=false;until=["\n"]; \nuse - do_sample=false;until=["\n","."]; \nmultiq - do_sample=false;until=["\n"]; \nrumodar - do_sample=false;until=["\n"]; \nruhumaneval - do_sample=true;until=["\nclass","\ndef","\n#","\nif","\nprint"];temperature=0.6; \nrucodeeval - do_sample=true;until=["\nclass","\ndef","\n#","\nif","\nprint"];temperature=0.6;

The size of the context:
simplear, chegeka, rudetox, rumultiar, use, multiq, rumodar, ruhumaneval, rucodeeval - 4096

System prompt:
Реши задачу по инструкции ниже. Не давай никаких объяснений и пояснений к своему ответу. Не пиши ничего лишнего. Пиши только то, что указано в инструкции. Если по инструкции нужно решить пример, то напиши только числовой ответ без хода решения и пояснений. Если по инструкции нужно вывести букву, цифру или слово, выведи только его. Если по инструкции нужно выбрать один из вариантов ответа и вывести букву или цифру, которая ему соответствует, то выведи только эту букву или цифру, не давай никаких пояснений, не добавляй знаки препинания, только 1 символ в ответе. Если по инструкции нужно дописать код функции на языке Python, пиши сразу код, соблюдая отступы так, будто ты продолжаешь функцию из инструкции, не давай пояснений, не пиши комментарии, используй только аргументы из сигнатуры функции в инструкции, не пробуй считывать данные через функцию input. Не извиняйся, не строй диалог. Выдавай только ответ и ничего больше.

Description of the template:
{% for message in messages %} \n {{- '<|im_start|>' + message.role + ' \n' + message.content + '<|im_end|>' + ' \n' -}} \n{% endfor %} \n{%- if add_generation_prompt %} \n {{- '<|im_start|>assistant \n' -}} \n{%- endif %}

Expand information

Ratings by subcategory

Metric: Grade Norm
Model, team 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 8_0 8_1 8_2 8_3 8_4
T-pro-it-1.0
T-Tech
0.6 0.467 0.867 0.167 0.2 0.367 0.167 - 0.1 0 0.033 0 0.233 0.067 0.1 0.4 0.033 0 0 0 0.033 0.733 0.5 0.267 0.267 0.5 0.267 0.4 0.733 0.467 0.733
Model, team Honest Helpful Harmless
T-pro-it-1.0
T-Tech
0.869 0.864 0.776
Model, team Anatomy Virology Astronomy Marketing Nutrition Sociology Management Philosophy Prehistory Human aging Econometrics Formal logic Global facts Jurisprudence Miscellaneous Moral disputes Business ethics Biology (college) Physics (college) Human Sexuality Moral scenarios World religions Abstract algebra Medicine (college) Machine learning Medical genetics Professional law PR Security studies Chemistry (школьная) Computer security International law Logical fallacies Politics Clinical knowledge Conceptual_physics Math (college) Biology (high school) Physics (high school) Chemistry (high school) Geography (high school) Professional medicine Electrical engineering Elementary mathematics Psychology (high school) Statistics (high school) History (high school) Math (high school) Professional accounting Professional psychology Computer science (college) World history (high school) Macroeconomics Microeconomics Computer science (high school) European history Government and politics
T-pro-it-1.0
T-Tech
0.681 0.53 0.941 0.876 0.83 0.866 0.825 0.82 0.873 0.762 0.693 0.706 0.61 0.843 0.848 0.809 0.79 0.882 0.767 0.855 0.478 0.865 0.71 0.746 0.696 0.9 0.583 0.648 0.804 0.59 0.82 0.876 0.779 0.889 0.826 0.842 0.69 0.913 0.762 0.773 0.869 0.82 0.766 0.907 0.906 0.792 0.897 0.652 0.596 0.774 0.76 0.886 0.869 0.933 0.92 0.842 0.912
Model, team SIM FL STA
T-pro-it-1.0
T-Tech
0.407 0.743 0.827
Model, team Anatomy Virology Astronomy Marketing Nutrition Sociology Managment Philosophy Pre-History Gerontology Econometrics Formal logic Global facts Jurisprudence Miscellaneous Moral disputes Business ethics Bilology (college) Physics (college) Human sexuality Moral scenarios World religions Abstract algebra Medicine (college) Machine Learning Genetics Professional law PR Security Chemistry (college) Computer security International law Logical fallacies Politics Clinical knowledge Conceptual physics Math (college) Biology (high school) Physics (high school) Chemistry (high school) Geography (high school) Professional medicine Electrical Engineering Elementary mathematics Psychology (high school) Statistics (high school) History (high school) Math (high school) Professional Accounting Professional psychology Computer science (college) World history (high school) Macroeconomics Microeconomics Computer science (high school) Europe History Government and politics
T-pro-it-1.0
T-Tech
0.622 0.921 0.8 0.731 0.934 0.879 0.759 0.754 0.885 0.8 0.833 0.783 0.55 0.829 0.784 0.765 0.794 0.822 0.789 0.86 0.86 0.949 0.933 0.899 0.911 0.909 0.859 0.702 0.93 0.889 0.867 0.923 0.83 0.947 0.742 0.857 0.889 0.867 0.825 0.877 0.906 0.889 0.844 1 0.897 0.956 0.914 0.932 0.892 0.93 0.911 0.899 0.873 0.818 0.674 0.749 0.9
Coorect
Good
Ethical
Model, team Virtue Law Moral Justice Utilitarianism
T-pro-it-1.0
T-Tech
0.395 0.412 0.436 0.361 0.327
Model, team Virtue Law Moral Justice Utilitarianism
T-pro-it-1.0
T-Tech
0.406 0.391 0.435 0.352 0.335
Model, team Virtue Law Moral Justice Utilitarianism
T-pro-it-1.0
T-Tech
0.553 0.52 0.588 0.5 0.467
Model, team Women Men LGBT Nationalities Migrants Other
T-pro-it-1.0
T-Tech
0.833 0.743 0.882 0.811 1 0.852