GigaChat

GIGACHAT Created at 01.11.2024 08:35
0.5
The overall result
107
Place in the rating
In the top by tasks:
10
ruModAr
The task is one of the main ones
Weak tasks:
505
RWSD
202
PARus
265
RCB
256
ruEthics
206
MultiQ
181
ruWorldTree
177
ruOpenBookQA
94
CheGeKa
199
ruMMLU
324
ruHateSpeech
280
ruDetox
124
ruHHH
132
ruTiE
157
ruHumanEval
30
USE
106
MathLogicQA
276
ruMultiAr
245
SimpleAr
180
LCS
313
BPS
125
MaMuRAMu
126
ruCodeEval
+18
Hide

Ratings for leaderboard tasks

The table will scroll to the left

Task name Result Metric
LCS 0.116 Accuracy
RCB 0.509 / 0.314 Accuracy F1 macro
USE 0.34 Grade norm
RWSD 0.427 Accuracy
PARus 0.82 Accuracy
ruTiE 0.728 Accuracy
MultiQ 0.367 / 0.25 F1 Exact match
CheGeKa 0.307 / 0.26 F1 Exact match
ruModAr 0.863 Exact match
MaMuRAMu 0.724 Accuracy
ruMultiAr 0.225 Exact match
ruCodeEval 0.077 / 0.151 / 0.183 Pass@k
MathLogicQA 0.473 Accuracy
ruWorldTree 0.91 / 0.91 Accuracy F1 macro
ruOpenBookQA 0.815 / 0.654 Accuracy F1 macro

Evaluation on open tasks:

Go to the ratings by subcategory

The table will scroll to the left

Task name Result Metric
BPS 0.839 Accuracy
ruMMLU 0.566 Accuracy
SimpleAr 0.938 Exact match
ruHumanEval 0.063 / 0.11 / 0.134 Pass@k
ruHHH 0.758
ruHateSpeech 0.604
ruDetox 0.143
ruEthics
Correct God Ethical
Virtue 0.212 0.285 0.283
Law 0.256 0.29 0.281
Moral 0.246 0.294 0.3
Justice 0.187 0.249 0.262
Utilitarianism 0.195 0.244 0.287

Information about the submission:

Mera version
v.1.2.0
Torch Version
2.4.0
The version of the codebase
db539c9
CUDA version
12.1
Precision of the model weights
-
Seed
1234
Butch
1
Transformers version
4.46.0.dev0
The number of GPUs and their type
5 x NVIDIA H100 80GB HBM3
Architecture
gigachat_llms

Team:

GIGACHAT

Name of the ML model:

GigaChat

Model type:

Closed

API

SFT

MoE

Architecture description:

GigaChat (version GigaChat:26.20) is a Large Language Model (LLM) that was fine-tuned on instruction corpus and has context length of 32k tokens. GigaChat Pro is Mixture of Experts model and has 3B active parameters. The version is available for users via API in preview mode https://developers.sber.ru/portal/products/gigachat-api

Description of the training:

-

Pretrain data:

-

License:

Proprietary model by Sber

Inference parameters

Generation Parameters:
simplear - do_sample=false;until=["\n"]; \nchegeka - do_sample=false;until=["\n"]; \nrudetox - do_sample=false;until=["\n"]; \nrumultiar - do_sample=false;until=["\n"]; \nuse - do_sample=false;until=["\n","."]; \nmultiq - do_sample=false;until=["\n"]; \nrumodar - do_sample=false;until=["\n"]; \nruhumaneval - do_sample=true;until=["\nclass","\ndef","\n#","\nif","\nprint"];temperature=0.6; \nrucodeeval - do_sample=true;until=["\nclass","\ndef","\n#","\nif","\nprint"];temperature=0.6;

System prompt:
Реши задачу по инструкции ниже. Не давай никаких объяснений и пояснений к своему ответу. Не пиши ничего лишнего. Пиши только то, что указано в инструкции. Если по инструкции нужно решить пример, то напиши только числовой ответ без хода решения и пояснений. Если по инструкции нужно вывести букву, цифру или слово, выведи только его. Если по инструкции нужно выбрать один из вариантов ответа и вывести букву или цифру, которая ему соответствует, то выведи только эту букву или цифру, не давай никаких пояснений, не добавляй знаки препинания, только 1 символ в ответе. Если по инструкции нужно дописать код функции на языке Python, пиши сразу код, соблюдая отступы так, будто ты продолжаешь функцию из инструкции, не давай пояснений, не пиши комментарии, используй только аргументы из сигнатуры функции в инструкции, не пробуй считывать данные через функцию input. Не извиняйся, не строй диалог. Выдавай только ответ и ничего больше.

Expand information

Ratings by subcategory

Metric: Grade Norm
Model, team 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 8_0 8_1 8_2 8_3 8_4
GigaChat
GIGACHAT
0.833 0.333 0.633 0.167 0.133 0.333 0.167 - 0.2 0.2 0.267 0.1 0.433 0.1 0.067 0.533 0.067 0 0.3 0.067 0.1 0.467 0.3 0.033 0.1 0.692 0.433 0.3 0.5 0.467 0.633
Model, team Honest Helpful Harmless
GigaChat
GIGACHAT
0.689 0.78 0.81
Model, team Anatomy Virology Astronomy Marketing Nutrition Sociology Management Philosophy Prehistory Human aging Econometrics Formal logic Global facts Jurisprudence Miscellaneous Moral disputes Business ethics Biology (college) Physics (college) Human Sexuality Moral scenarios World religions Abstract algebra Medicine (college) Machine learning Medical genetics Professional law PR Security studies Chemistry (школьная) Computer security International law Logical fallacies Politics Clinical knowledge Conceptual_physics Math (college) Biology (high school) Physics (high school) Chemistry (high school) Geography (high school) Professional medicine Electrical engineering Elementary mathematics Psychology (high school) Statistics (high school) History (high school) Math (high school) Professional accounting Professional psychology Computer science (college) World history (high school) Macroeconomics Microeconomics Computer science (high school) European history Government and politics
GigaChat
GIGACHAT
0.548 0.482 0.717 0.808 0.65 0.806 0.699 0.666 0.648 0.578 0.421 0.405 0.38 0.63 0.727 0.584 0.62 0.632 0.322 0.695 0.277 0.778 0.31 0.555 0.402 0.65 0.397 0.63 0.661 0.39 0.71 0.793 0.607 0.747 0.623 0.521 0.31 0.71 0.391 0.498 0.793 0.533 0.586 0.451 0.768 0.454 0.691 0.341 0.411 0.567 0.52 0.717 0.615 0.689 0.69 0.679 0.751
Model, team SIM FL STA
GigaChat
GIGACHAT
0.273 0.736 0.735
Model, team Anatomy Virology Astronomy Marketing Nutrition Sociology Managment Philosophy Pre-History Gerontology Econometrics Formal logic Global facts Jurisprudence Miscellaneous Moral disputes Business ethics Bilology (college) Physics (college) Human sexuality Moral scenarios World religions Abstract algebra Medicine (college) Machine Learning Genetics Professional law PR Security Chemistry (college) Computer security International law Logical fallacies Politics Clinical knowledge Conceptual physics Math (college) Biology (high school) Physics (high school) Chemistry (high school) Geography (high school) Professional medicine Electrical Engineering Elementary mathematics Psychology (high school) Statistics (high school) History (high school) Math (high school) Professional Accounting Professional psychology Computer science (college) World history (high school) Macroeconomics Microeconomics Computer science (high school) Europe History Government and politics
GigaChat
GIGACHAT
0.467 0.802 0.567 0.648 0.789 0.793 0.621 0.702 0.788 0.677 0.667 0.667 0.475 0.829 0.731 0.704 0.72 0.667 0.526 0.807 0.333 0.763 0.689 0.746 0.689 0.803 0.795 0.737 0.86 0.756 0.822 0.833 0.714 0.825 0.682 0.679 0.667 0.8 0.509 0.585 0.829 0.857 0.778 0.622 0.914 0.822 0.845 0.591 0.831 0.86 0.822 0.754 0.759 0.649 0.465 0.737 0.8
Coorect
Good
Ethical
Model, team Virtue Law Moral Justice Utilitarianism
GigaChat
GIGACHAT
0.212 0.256 0.246 0.187 0.195
Model, team Virtue Law Moral Justice Utilitarianism
GigaChat
GIGACHAT
0.285 0.29 0.294 0.249 0.244
Model, team Virtue Law Moral Justice Utilitarianism
GigaChat
GIGACHAT
0.283 0.281 0.3 0.262 0.287
Model, team Women Men LGBT Nationalities Migrants Other
GigaChat
GIGACHAT
0.778 0.6 0 0.162 0.286 0.77