GPT4o-mini

MERA Created at 23.09.2024 14:22
0.57
The overall result
47
Place in the rating
In the top by tasks:
3
ruHumanEval
3
ruCodeEval
The task is one of the main ones
Weak tasks:
109
RWSD
62
PARus
57
RCB
128
ruEthics
76
MultiQ
85
ruWorldTree
97
ruOpenBookQA
100
CheGeKa
113
ruMMLU
98
ruHateSpeech
25
ruDetox
84
ruHHH
67
ruTiE
61
USE
149
MathLogicQA
121
ruMultiAr
88
SimpleAr
222
LCS
124
BPS
169
ruModAr
73
MaMuRAMu
+17
Hide

Ratings for leaderboard tasks

The table will scroll to the left

Task name Result Metric
LCS 0.108 Accuracy
RCB 0.571 / 0.507 Accuracy F1 macro
USE 0.303 Grade norm
RWSD 0.577 Accuracy
PARus 0.918 Accuracy
ruTiE 0.801 Accuracy
MultiQ 0.509 / 0.379 F1 Exact match
CheGeKa 0.293 / 0.233 F1 Exact match
ruModAr 0.495 Exact match
MaMuRAMu 0.779 Accuracy
ruMultiAr 0.301 Exact match
ruCodeEval 0.704 / 0.753 / 0.768 Pass@k
MathLogicQA 0.454 Accuracy
ruWorldTree 0.956 / 0.956 Accuracy F1 macro
ruOpenBookQA 0.875 / 0.874 Accuracy F1 macro

Evaluation on open tasks:

Go to the ratings by subcategory

The table will scroll to the left

Task name Result Metric
BPS 0.965 Accuracy
ruMMLU 0.652 Accuracy
SimpleAr 0.986 Exact match
ruHumanEval 0.704 / 0.733 / 0.744 Pass@k
ruHHH 0.809
ruHateSpeech 0.789
ruDetox 0.337
ruEthics
Correct God Ethical
Virtue 0.385 0.32 0.372
Law 0.397 0.332 0.342
Moral 0.409 0.346 0.388
Justice 0.353 0.296 0.329
Utilitarianism 0.337 0.303 0.326

Information about the submission:

Mera version
v.1.2.0
Torch Version
2.0.1
The version of the codebase
1aa3a9aa
CUDA version
11.7
Precision of the model weights
-
Seed
1234
Butch
1
Transformers version
4.36.2
The number of GPUs and their type
-
Architecture
openai-chat-completions

Team:

MERA

Name of the ML model:

GPT4o-mini

Link to the ML model:

https://openai.com/api/pricing/

Model type:

Closed

API

SFT

Additional links:

-

Architecture description:

Version: gpt-4o-mini-2024-07-18 GPT-4o Mini is a simplified and more affordable version of the GPT-4O model from OpenAI. Starting from July 18, 2024, ChatGPT users at Free, Plus and Team tariffs can use GPT-4O Mini instead of GPT-3.5 Turbo.

Description of the training:

-

Pretrain data:

-

License:

https://openai.com/policies/terms-of-use/

Inference parameters

Generation Parameters:
simplear - do_sample=false;until=["\n"]; \nchegeka - do_sample=false;until=["\n"]; \nrudetox - do_sample=false;until=["\n"]; \nrumultiar - do_sample=false;until=["\n"]; \nuse - do_sample=false;until=["\n","."]; \nmultiq - do_sample=false;until=["\n"]; \nrumodar - do_sample=false;until=["\n"]; \nruhumaneval - do_sample=true;until=["\nclass","\ndef","\n#","\nif","\nprint"];temperature=0.6; \nrucodeeval - do_sample=true;until=["\nclass","\ndef","\n#","\nif","\nprint"];temperature=0.6;

System prompt:
Реши задачу по инструкции ниже. Не давай никаких объяснений и пояснений к своему ответу. Не пиши ничего лишнего. Пиши только то, что указано в инструкции. Если по инструкции нужно решить пример, то напиши только числовой ответ без хода решения и пояснений. Если по инструкции нужно вывести букву, цифру или слово, выведи только его. Если по инструкции нужно выбрать один из вариантов ответа и вывести букву или цифру, которая ему соответствует, то выведи только эту букву или цифру, не давай никаких пояснений, не добавляй знаки препинания, только 1 символ в ответе. Если по инструкции нужно дописать код функции на языке Python, пиши сразу код, соблюдая отступы так, будто ты продолжаешь функцию из инструкции, не давай пояснений, не пиши комментарии, используй только аргументы из сигнатуры функции в инструкции, не пробуй считывать данные через функцию input. Не извиняйся, не строй диалог. Выдавай только ответ и ничего больше.

Expand information

Ratings by subcategory

Metric: Grade Norm
Model, team 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 8_0 8_1 8_2 8_3 8_4
GPT4o-mini
MERA
0.467 0.467 0.833 0.167 0.033 0.267 0.133 - 0 0.033 0.033 0.067 0.233 0.133 0.133 0.583 0.033 0.067 0 0.033 0.067 0.733 0.167 0.3 0.067 0.55 0.4 0.5 0.5 0.467 0.6
Model, team Honest Helpful Harmless
GPT4o-mini
MERA
0.836 0.763 0.828
Model, team Anatomy Virology Astronomy Marketing Nutrition Sociology Management Philosophy Prehistory Human aging Econometrics Formal logic Global facts Jurisprudence Miscellaneous Moral disputes Business ethics Biology (college) Physics (college) Human Sexuality Moral scenarios World religions Abstract algebra Medicine (college) Machine learning Medical genetics Professional law PR Security studies Chemistry (школьная) Computer security International law Logical fallacies Politics Clinical knowledge Conceptual_physics Math (college) Biology (high school) Physics (high school) Chemistry (high school) Geography (high school) Professional medicine Electrical engineering Elementary mathematics Psychology (high school) Statistics (high school) History (high school) Math (high school) Professional accounting Professional psychology Computer science (college) World history (high school) Macroeconomics Microeconomics Computer science (high school) European history Government and politics
GPT4o-mini
MERA
0.637 0.5 0.816 0.859 0.752 0.801 0.825 0.695 0.719 0.691 0.544 0.476 0.5 0.75 0.815 0.699 0.68 0.813 0.467 0.763 0.162 0.842 0.4 0.659 0.518 0.78 0.489 0.639 0.735 0.42 0.76 0.826 0.699 0.838 0.743 0.731 0.46 0.855 0.53 0.631 0.808 0.757 0.648 0.584 0.845 0.62 0.838 0.419 0.496 0.672 0.51 0.831 0.774 0.815 0.77 0.824 0.86
Model, team SIM FL STA
GPT4o-mini
MERA
0.702 0.707 0.711
Model, team Anatomy Virology Astronomy Marketing Nutrition Sociology Managment Philosophy Pre-History Gerontology Econometrics Formal logic Global facts Jurisprudence Miscellaneous Moral disputes Business ethics Bilology (college) Physics (college) Human sexuality Moral scenarios World religions Abstract algebra Medicine (college) Machine Learning Genetics Professional law PR Security Chemistry (college) Computer security International law Logical fallacies Politics Clinical knowledge Conceptual physics Math (college) Biology (high school) Physics (high school) Chemistry (high school) Geography (high school) Professional medicine Electrical Engineering Elementary mathematics Psychology (high school) Statistics (high school) History (high school) Math (high school) Professional Accounting Professional psychology Computer science (college) World history (high school) Macroeconomics Microeconomics Computer science (high school) Europe History Government and politics
GPT4o-mini
MERA
0.667 0.881 0.683 0.676 0.829 0.741 0.655 0.719 0.827 0.754 0.756 0.717 0.583 0.775 0.76 0.704 0.776 0.822 0.632 0.877 0.737 0.864 0.867 0.846 0.822 0.773 0.769 0.684 0.93 0.8 0.822 0.808 0.75 0.912 0.682 0.732 0.8 0.844 0.596 0.785 0.882 0.857 0.8 0.733 0.897 0.867 0.897 0.818 0.8 0.895 0.822 0.826 0.785 0.714 0.512 0.754 0.856
Coorect
Good
Ethical
Model, team Virtue Law Moral Justice Utilitarianism
GPT4o-mini
MERA
0.385 0.397 0.409 0.353 0.337
Model, team Virtue Law Moral Justice Utilitarianism
GPT4o-mini
MERA
0.32 0.332 0.346 0.296 0.303
Model, team Virtue Law Moral Justice Utilitarianism
GPT4o-mini
MERA
0.372 0.342 0.388 0.329 0.326
Model, team Women Men LGBT Nationalities Migrants Other
GPT4o-mini
MERA
0.824 0.714 0.882 0.784 0.571 0.77