GigaChat-20B-A3B

Created at 13.12.2024 07:11

Assessment of the main tasks: 0.513

The table will scroll to the left

Task name Result Metric
LCS 0.07 Accuracy
RCB 0.518 / 0.441 Avg. F1 / Accuracy
USE 0.334 Grade Norm
RWSD 0.512 Accuracy
PARus 0.842 Accuracy
ruTiE 0.758 Accuracy
MultiQ 0.393 / 0.187 F1-score/EM
CheGeKa 0.318 / 0.252 F1 / EM
ruModAr 0.87 EM
MaMuRAMu 0.741 Accuracy
ruMultiAr 0.272 EM
ruCodeEval 0.041 / 0.054 / 0.061 pass@k
MathLogicQA 0.455 Accuracy
ruWorldTree 0.901 / 0.901 Avg. F1 / Accuracy
ruOpenBookQA 0.833 / 0.833 Avg. F1 / Accuracy

Evaluation on open tasks:

It is not taken into account in the overall rating

The table will scroll to the left

Task name Result Metric
BPS 0.921 Accuracy
ruMMLU 0.587 Accuracy
SimpleAr 0.923 EM
ruHumanEval 0.037 / 0.04 / 0.043 pass@k
ruHHH

0.73

  • Honest: 0.689
  • Harmless: 0.707
  • Helpful: 0.797
Accuracy
ruHateSpeech

0.777

  • Women : 0.815
  • Man : 0.629
  • LGBT : 0.647
  • Nationality : 0.757
  • Migrants : 0.714
  • Other : 0.852
Accuracy
ruDetox
  • 0.191
  • 0.35
  • 0.783
  • 0.748

Overall average score (J)

Assessment of the preservation of meaning (SIM)

Assessment of naturalness (FL)

Style Transfer Accuracy (STA)

ruEthics
Correct God Ethical
Virtue 0.299 0.314 0.359
Law 0.337 0.329 0.37
Moral 0.351 0.334 0.403
Justice 0.251 0.266 0.327
Utilitarianism 0.249 0.295 0.329

Table results:

[[0.299, 0.337 , 0.351, 0.251 , 0.249],
[0.314, 0.329 , 0.334, 0.266 , 0.295],
[0.359, 0.37 , 0.403, 0.327 , 0.329]]

5 MCC

Information about the submission:

Team:

GIGACHAT

Name of the ML model:

GigaChat-20B-A3B

Model size

20.0B

Model type:

Opened

SFT

MoE

Architecture description:

GigaChat-20B-A3B is a Large Language Model (LLM) that was fine-tuned on instruction corpus and has context length of 32k tokens. GigaChat-20B-A3B is Mixture of Experts model and has 3.3B active parameters. The model is available at https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct as instruct version and https://huggingface.co/ai-sage/GigaChat-20B-A3B-base as base version

Description of the training:

-

Pretrain data:

-

License:

Open-source model by Sber

Basic tags:

MERA version:
v.1.2.0

The version of the codebase:
db539c9

Torch Version:
2.4.0

CUDA version:
12.1

Transformers version:
4.46.0.dev0

The number of GPUs and their type:
5 x NVIDIA H100 80GB HBM3

Butch:
1

Seed:
1234

Architecture:
gigachat_llms

Chat template:
Yes

Special tokens:
Yes

Multi-Turn:
1

Inference parameters

Generation Parameters:
simplear - do_sample=false;until=["\n"];
chegeka - do_sample=false;until=["\n"];
rudetox - do_sample=false;until=["\n"];
rumultiar - do_sample=false;until=["\n"];
use - do_sample=false;until=["\n","."];
multiq - do_sample=false;until=["\n"];
rumodar - do_sample=false;until=["\n"];
ruhumaneval - do_sample=true;until=["\nclass","\ndef","\n#","\nif","\nprint"];temperature=0.6;
rucodeeval - do_sample=true;until=["\nclass","\ndef","\n#","\nif","\nprint"];temperature=0.6;

Description of the template:
{% if messages[0]['role'] == 'system' -%}\n {%- set loop_messages = messages[1:] -%}\n {%- set system_message = bos_token + messages[0]['content'] + additional_special_tokens[1] -%}\n{%- else -%}\n {%- set loop_messages = messages -%}\n {%- set system_message = bos_token + '' -%}\n{%- endif -%}\n{%- for message in loop_messages %}\n {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {% endif %}\n \n {%- if loop.index0 == 0 -%}\n {{ system_message -}}\n {%- endif -%}\n {%- if message['role'] == 'user' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {{ 'available functions' + additional_special_tokens[0] + additional_special_tokens[2] + additional_special_tokens[3] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if message['role'] == 'assistant' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if loop.last and add_generation_prompt -%}\n {{ 'assistant' + additional_special_tokens[0] -}}\n {%- endif -%}\n{%- endfor %}