GigaChat Max

GIGACHAT Created at 24.10.2024 07:30
0.588
The overall result
21
Place in the rating

Ratings for leaderboard tasks

The table will scroll to the left

Task name Result Metric
LCS 0.192 Accuracy
RCB 0.58 / 0.423 Accuracy F1 macro
USE 0.393 Grade norm
RWSD 0.665 Accuracy
PARus 0.928 Accuracy
ruTiE 0.715 Accuracy
MultiQ 0.486 / 0.322 F1 Exact match
CheGeKa 0.469 / 0.397 F1 Exact match
ruModAr 0.938 Exact match
MaMuRAMu 0.824 Accuracy
ruMultiAr 0.362 Exact match
ruCodeEval 0.077 / 0.093 / 0.098 Pass@k
MathLogicQA 0.575 Accuracy
ruWorldTree 0.975 / 0.975 Accuracy F1 macro
ruOpenBookQA 0.918 / 0.737 Accuracy F1 macro

Evaluation on open tasks:

Go to the ratings by subcategory

The table will scroll to the left

Task name Result Metric
BPS 0.977 Accuracy
ruMMLU 0.718 Accuracy
SimpleAr 0.989 Exact match
ruHumanEval 0.184 / 0.195 / 0.201 Pass@k
ruHHH 0.775
ruHateSpeech 0.611
ruDetox 0.199
ruEthics
Correct God Ethical
Virtue 0.394 0.369 0.42
Law 0.379 0.358 0.422
Moral 0.422 0.386 0.451
Justice 0.347 0.328 0.377
Utilitarianism 0.336 0.332 0.386

Information about the submission:

Mera version
v.1.2.0
Torch Version
2.4.0
The version of the codebase
44ddcb3
CUDA version
12.1
Precision of the model weights
-
Seed
1234
Butch
1
Transformers version
4.43.2
The number of GPUs and their type
5 x NVIDIA H100 80GB HBM3
Architecture
gigachat_llms

Team:

GIGACHAT

Name of the ML model:

GigaChat Max

Model type:

Closed

API

Architecture description:

GigaChat MAX (version 1.0.0.0) is the largest in GigaChat Model family (LLM). The model will be available for B2C users https://giga.chat/ and B2B users via API soon https://developers.sber.ru/docs/ru/gigachat/api/tariffs.

Description of the training:

Pretrain data:

License:

Proprietary model by Sber

Inference parameters

Generation Parameters:
simplear - do_sample=false;until=["\n"]; \nchegeka - do_sample=false;until=["\n"]; \nrudetox - do_sample=false;until=["\n"]; \nrumultiar - do_sample=false;until=["\n"]; \nuse - do_sample=false;until=["\n","."]; \nmultiq - do_sample=false;until=["\n"]; \nrumodar - do_sample=false;until=["\n"]; \nruhumaneval - do_sample=true;until=["\nclass","\ndef","\n#","\nif","\nprint"]; \nrucodeeval - do_sample=true;until=["\nclass","\ndef","\n#","\nif","\nprint"];

System prompt:
Реши задачу по инструкции ниже. Не давай никаких объяснений и пояснений к своему ответу. Не пиши ничего лишнего. Пиши только то, что указано в инструкции. Если по инструкции нужно решить пример, то напиши только числовой ответ без хода решения и пояснений. Если по инструкции нужно вывести букву, цифру или слово, выведи только его. Если по инструкции нужно выбрать один из вариантов ответа и вывести букву или цифру, которая ему соответствует, то выведи только эту букву или цифру, не давай никаких пояснений, не добавляй знаки препинания, только 1 символ в ответе. Если по инструкции нужно дописать код функции на языке Python, пиши сразу код, соблюдая отступы так, будто ты продолжаешь функцию из инструкции, не давай пояснений, не пиши комментарии, используй только аргументы из сигнатуры функции в инструкции, не пробуй считывать данные через функцию input. Не извиняйся, не строй диалог. Выдавай только ответ и ничего больше.

Description of the template:
API Default

Expand information

Ratings by subcategory

Metric: Accuracy
Model, team Honest Helpful Harmless
GigaChat Max
GIGACHAT
0.77 0.729 0.828
Model, team Anatomy Virology Astronomy Marketing Nutrition Sociology Management Philosophy Prehistory Human aging Econometrics Formal logic Global facts Jurisprudence Miscellaneous Moral disputes Business ethics Biology (college) Physics (college) Human Sexuality Moral scenarios World religions Abstract algebra Medicine (college) Machine learning Medical genetics Professional law PR Security studies Chemistry (школьная) Computer security International law Logical fallacies Politics Clinical knowledge Conceptual_physics Math (college) Biology (high school) Physics (high school) Chemistry (high school) Geography (high school) Professional medicine Electrical engineering Elementary mathematics Psychology (high school) Statistics (high school) History (high school) Math (high school) Professional accounting Professional psychology Computer science (college) World history (high school) Macroeconomics Microeconomics Computer science (high school) European history Government and politics
GigaChat Max
GIGACHAT
0.659 0.524 0.908 0.855 0.85 0.821 0.806 0.775 0.846 0.735 0.605 0.556 0.47 0.741 0.851 0.769 0.76 0.861 0.567 0.786 0.642 0.865 0.42 0.711 0.67 0.87 0.505 0.648 0.776 0.52 0.77 0.851 0.748 0.879 0.751 0.774 0.47 0.897 0.563 0.665 0.874 0.794 0.724 0.594 0.884 0.648 0.814 0.437 0.528 0.739 0.67 0.785 0.779 0.84 0.83 0.818 0.886
Model, team SIM FL STA
GigaChat Max
GIGACHAT
0.327 0.749 0.765
Coorect
Good
Ethical
Model, team Virtue Law Moral Justice Utilitarianism
GigaChat Max
GIGACHAT
0.394 0.379 0.422 0.347 0.336
Model, team Virtue Law Moral Justice Utilitarianism
GigaChat Max
GIGACHAT
0.369 0.358 0.386 0.328 0.332
Model, team Virtue Law Moral Justice Utilitarianism
GigaChat Max
GIGACHAT
0.42 0.422 0.451 0.377 0.386
Model, team Women Men LGBT Nationalities Migrants Other
GigaChat Max
GIGACHAT
0.824 0.543 0 0.135 0.286 0.77