The table will scroll to the left
Task name | Result | Metric |
---|---|---|
LCS | 0.094 | Accuracy |
RCB | 0.505 / 0.417 | Avg. F1 / Accuracy |
USE | 0.023 | Grade Norm |
RWSD | 0.527 | Accuracy |
PARus | 0.84 | Accuracy |
ruTiE | 0.64 | Accuracy |
MultiQ | 0.112 / 0.019 | F1-score/EM |
CheGeKa | 0.022 / 0 | F1 / EM |
ruModAr | 0.381 | EM |
ruMultiAr | 0.299 | EM |
MathLogicQA | 0.5 | Accuracy |
ruWorldTree | 0.933 / 0.933 | Avg. F1 / Accuracy |
ruOpenBookQA | 0.835 / 0.834 | Avg. F1 / Accuracy |
The table will scroll to the left
Task name | Result | Metric | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BPS | 0.162 | Accuracy | ||||||||||||||||||||||||
ruMMLU | 0.777 | Accuracy | ||||||||||||||||||||||||
SimpleAr | 0.991 | EM | ||||||||||||||||||||||||
ruHumanEval | 0 / 0 / 0 | pass@k | ||||||||||||||||||||||||
ruHHH |
0.635
|
Accuracy | ||||||||||||||||||||||||
ruHateSpeech |
0.747
|
Accuracy | ||||||||||||||||||||||||
ruDetox |
|
Overall average score (J) Assessment of the preservation of meaning (SIM) Assessment of naturalness (FL) Style Transfer Accuracy (STA) |
||||||||||||||||||||||||
ruEthics |
Table results:
[[-0.37, -0.369
, -0.362, -0.327
, -0.284], |
5 MCC |
НГУ
Qwen 7B Instruct
Qwen2 7B Instruct is a language model including decoder of 7B size. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, tokenizer is improved for adaptation to multiple natural languages and codes.
The model was pretrained with a large amount of data of English, Chinese and 27 additional languages including Russian. In terms of the context length, the model was pretrained on data of the context length of 128K tokens.
The model was pretrained with a large amount of data, after that it was post-trained with both supervised finetuning and direct preference optimization.
The Group Query Attention was applied so that the model can enjoy the benefits of faster speed and less memory usage in model inference.
Apache 2.0
All the parameters were not changed and are used as prepared by the model's authors. Details: - 1 x NVIDIA A100 80GB - dtype float32- Pytorch 2.3.1 + CUDA 11.7 - Transformers 4.38.2 - Context length 32768.