lightblue/suzume-llama-3-8B-multilingual

BODBE LLM Created at 08.05.2024 13:29
0.453
The overall result
The submission does not contain all the required tasks

Ratings for leaderboard tasks

The table will scroll to the left

Task name Result Metric
LCS 0.142 Accuracy
RCB 0.521 / 0.424 Accuracy F1 macro
USE 0.018 Grade norm
RWSD 0.569 Accuracy
PARus 0.744 Accuracy
ruTiE 0.614 Accuracy
MultiQ 0.261 / 0.161 F1 Exact match
CheGeKa 0.035 / 0 F1 Exact match
ruModAr 0.59 Exact match
ruMultiAr 0.254 Exact match
MathLogicQA 0.373 Accuracy
ruWorldTree 0.844 / 0.844 Accuracy F1 macro
ruOpenBookQA 0.795 / 0.795 Accuracy F1 macro

Evaluation on open tasks:

Go to the ratings by subcategory

The table will scroll to the left

Task name Result Metric
BPS 0.336 Accuracy
ruMMLU 0.712 Accuracy
SimpleAr 0.955 Exact match
ruHumanEval 0.01 / 0.052 / 0.104 Pass@k
ruHHH 0.663
ruHateSpeech 0.725
ruDetox 0.138
ruEthics
Correct God Ethical
Virtue -0.287 -0.327 -0.338
Law -0.309 -0.314 -0.318
Moral -0.283 -0.337 -0.356
Justice -0.261 -0.273 -0.305
Utilitarianism -0.227 -0.25 -0.274

Information about the submission:

Mera version
-
Torch Version
-
The version of the codebase
-
CUDA version
-
Precision of the model weights
-
Seed
-
Butch
-
Transformers version
-
The number of GPUs and their type
-
Architecture
-

Team:

BODBE LLM

Name of the ML model:

lightblue/suzume-llama-3-8B-multilingual

Architecture description:

Suzume 8B, многоязычная дообученная версия Llama 3 (meta-llama/Meta-Llama-3-8B-Instruct).

Description of the training:

Suzume 8B была дообучена Llama 3 на основе почти 90,000 многоязычных разговоров, что означает, что эта модель обладает интеллектом Llama 3, но дополнительно умеет общаться на большем количестве языков.

Pretrain data:

Llama 3 была предварительно обучена на более чем 15 триллионах токенов данных из общедоступных источников. Данные для дообучения включают общедоступные наборы инструкций, а также более 10 миллионов примеров с аннотациями от людей. Ни предварительные данные, ни данные для дообучения не включают данные пользователей Meta. Актуальность данных: марта 2023 г.

Training Details:

Эта модель была обучена с использованием 4 x A100 (80GB) в течение примерно 2.5 часов. Во время обучения использовались следующие гиперпараметры: learning_rate: 1e-05 train_batch_size: 2 eval_batch_size: 2 seed: 42 distributed_type: multi-GPU num_devices: 4 gradient_accumulation_steps: 2 total_train_batch_size: 16 total_eval_batch_size: 8 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: cosine lr_scheduler_warmup_steps: 10 num_epochs: 1

License:

license: other license_name: llama-3 license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/raw/main/LICENSE

Strategy, generation and parameters:

PyTorch version: 2.2.1+CUDA 12.1 Transformers: 4.40.1 lm-harness: v1.1.0 GPU: NVIDIA A100-SXM4-80GB

Expand information

Ratings by subcategory

Metric: Accuracy
Model, team Honest Helpful Harmless
lightblue/suzume-llama-3-8B-multilingual
BODBE LLM
0.59 0.593 0.81
Model, team Anatomy Virology Astronomy Marketing Nutrition Sociology Management Philosophy Prehistory Human aging Econometrics Formal logic Global facts Jurisprudence Miscellaneous Moral disputes Business ethics Biology (college) Physics (college) Human Sexuality Moral scenarios World religions Abstract algebra Medicine (college) Machine learning Medical genetics Professional law PR Security studies Chemistry (школьная) Computer security International law Logical fallacies Politics Clinical knowledge Conceptual_physics Math (college) Biology (high school) Physics (high school) Chemistry (high school) Geography (high school) Professional medicine Electrical engineering Elementary mathematics Psychology (high school) Statistics (high school) History (high school) Math (high school) Professional accounting Professional psychology Computer science (college) World history (high school) Macroeconomics Microeconomics Computer science (high school) European history Government and politics
lightblue/suzume-llama-3-8B-multilingual
BODBE LLM
0.7 0.875 0.9 0.571 0.762 0.8 0.8 0.765 0.9 0.9 0.636 0.8 0.6 0.692 0.455 0.4 0.8 0.889 0.4 0.9 0.4 0.731 0.8 0.725 0.6 0.636 0.75 0.786 0.9 0.636 0.4 0.778 0.8 0.8 0.818 0.9 0.8 0.857 0.7 0.6 0.785 0.7 0.8 0.7 0.813 0.4 0.9 0.7 0.5 0.7 0.5 0.813 0.853 1 0.417 0.394 0.704
Model, team SIM FL STA
lightblue/suzume-llama-3-8B-multilingual
BODBE LLM
0.513 0.701 0.311
Coorect
Good
Ethical
Model, team Virtue Law Moral Justice Utilitarianism
lightblue/suzume-llama-3-8B-multilingual
BODBE LLM
-0.287 -0.309 -0.283 -0.261 -0.227
Model, team Virtue Law Moral Justice Utilitarianism
lightblue/suzume-llama-3-8B-multilingual
BODBE LLM
-0.327 -0.314 -0.337 -0.273 -0.25
Model, team Virtue Law Moral Justice Utilitarianism
lightblue/suzume-llama-3-8B-multilingual
BODBE LLM
-0.338 -0.318 -0.356 -0.305 -0.274
Model, team Women Men LGBT Nationalities Migrants Other
lightblue/suzume-llama-3-8B-multilingual
BODBE LLM
0.759 0.743 0.588 0.595 0.429 0.803