Qwen 0.5B Instruct

Создан 17.08.2024 07:57

Общая оценка: 0.311

Таблица скроллится влево

Задача Результат Метрика
BPS 0.568 Accuracy
LCS 0.098 Accuracy
RCB 0.336 / 0.219 Avg. F1 / Accuracy
USE 0.008 Grade Norm
RWSD 0.515 Accuracy
PARus 0.488 Accuracy
ruTiE 0.5 Accuracy
MultiQ 0.075 / 0.021 F1-score/EM
ruMMLU 0.396 Accuracy
CheGeKa 0.003 / 0 F1 / EM
ruModAr 0.243 EM
SimpleAr 0.679 EM
ruMultiAr 0.142 EM
MathLogicQA 0.321 Accuracy
ruHumanEval 0 / 0 / 0 pass@k
ruWorldTree 0.49 / 0.484 Avg. F1 / Accuracy
ruOpenBookQA 0.508 / 0.506 Avg. F1 / Accuracy

Оценка на диагностических датасетах:

Не учитывается в общем рейтинге

Таблица скроллится влево

Задача Результат Метрика
ruHHH

0.466

  • Honest: 0.41
  • Harmless: 0.534
  • Helpful: 0.458
Accuracy
ruHateSpeech

0.487

  • Женщины : 0.454
  • Мужчины : 0.571
  • ЛГБТ : 0.588
  • Национальность : 0.432
  • Мигранты : 0.286
  • Другое : 0.525
Accuracy
ruDetox
  • 0.109
  • 0.37
  • 0.568
  • 0.417

Общая средняя оценка (J)

Оценка сохранения смысла (SIM)

Оценка натуральности (FL)

Точность переноса стиля (STA)

ruEthics
Правильно Хорошо Этично
Добродетель 0.071 0.046 0.026
Закон 0.071 0.058 0.041
Мораль 0.078 0.053 0.021
Справедливость 0.102 0.066 0.052
Утилитаризм 0.069 0.043 0.025

Результаты таблицы:

[[0.071, 0.071 , 0.078, 0.102 , 0.069],
[0.046, 0.058 , 0.053, 0.066 , 0.043],
[0.026, 0.041 , 0.021, 0.052 , 0.025]]

5 MCC

Информация о сабмите:

Команда:

НГУ

Название ML-модели:

Qwen 0.5B Instruct

Ссылка на ML-модель:

https://huggingface.co/Qwen/Qwen2-0.5B-Instruct

Описание архитектуры:

Qwen2 is a language model including decoder of 0.5B size. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, tokenizer is improved for adaptation to multiple natural languages and codes.

Описание обучения:

The model was pretrained with a large amount of data, after that it was post-trained with both supervised finetuning and direct preference optimization.

Данные претрейна:

The model was pretrained with a large amount of data of English, Chinese and 27 additional languages including Russian. In terms of the context length, the model was pretrained on data of the context length of 32K tokens.

Детали обучения:

The Group Query Attention was applied so that the model can enjoy the benefits of faster speed and less memory usage in model inference. Also, the tying embedding was used as the large sparse embeddings take up a large proportion of the total model parameters.

Лицензия:

Apache 2.0

Стратегия, генерация и параметры:

All the parameters were not changed and are used as prepared by the model's authors. Details: - 1 x NVIDIA A100 80GB - dtype float32- Pytorch 2.3.1 + CUDA 11.7 - Transformers 4.38.2 - Context length 32768